球の体積、表面積 中学生にも納得のいく方法で。 積分でも出します

Поделиться
HTML-код
  • Опубликовано: 27 дек 2024

Комментарии • 331

  • @sakijin4584
    @sakijin4584 3 года назад +65

    鈴木先生、こんにちわ。 いつも楽しく拝聴しております。
     私は最新の動画を楽しみつつも、何故か3~4年前くらいの動画もついつい見てしまいます。
    ちょっと薄暗い室内、壁に張り付いたホワイトボード、スーツ姿の鈴木先生・・・。
    言葉ではうまく説明できませんが、素朴・質素・愚直・・・といったことを最初に見た当時、感じました。
     私は子供といつも見ているのですが、数学の内容よりも「どうしてこんなに毎日続けられるのだろう?」、「こうやって続けていく人間のエネルギーって何だろう?」、「どんな動機がそのエネルギーになっているのだろう?」、「最初から4年後に14万人超の登録者数になると想定していたんだろうか?」、「本の出版とかオイラーの公式Tシャツ姿を想定していたんだろうか?」、「(ほとんど)数学の内容だけで続けていけるってどうやって確信できたんだろう? どんな信念があったんだろう?」など等、鈴木先生のエネルギーに関する話しで盛りあがることが殆どです。何回もこの頃の動画を見て、何回も同じような問いを親子で話し合っています。
     実は私も子供もあまり数学は得意ではなく、どちらかというと鈴木先生の講義を単に聞くことや姿を見ることが視聴している目的のようなものです。もちろん、そこから面白さや学びになることは沢山あります。ですが、むしろ「淡々と継続して表現をし続ける人」への畏怖のようなものを抱き、感じることがより大きな意義のような気がしています。
     鈴木先生はそんなことを教示するために動画を作成されているわけではないのでしょうが、将来に何が待っているのか分らずとも淡々と日々数学だけを続けていく何か勇気のようなものを感じずにはいられません。そうです、生きる勇気としか表現する単語を思いつきません。恐らくそのような不思議な魅力が当時の動画にあるように思えます。
     娘は今、高校2年生ですがお陰様で旧帝国大学の文系数学の半分程度は、なんとか解けるようになりました。国語・英語・社会は得意科目なので、二次試験はそこそこ目処が立ちそうです。私が甲斐性無しな者で、ロクに学習塾にも通わせてやれないままで終わりそうですが、努力を続ける意義のようなものもこちらが勝手に鈴木先生のお姿から学んだような気がして、中学生の頃から視聴し続けて良かったと思っています。
     感謝申し上げます。ありがとうございました。
    オイラーの公式 2017/07/07 UPからまもなく4年になろうとしています。
    これからも楽しい動画作成を続けていかれることを願って已みません。

    • @kantaro1966
      @kantaro1966  3 года назад +21

      いつもご覧くださりありがとうございます。そして、とても嬉しいコメントを頂き感激しております。文中の「4年後に14万人超の登録者数になると想定していたか?」については、この頃はチャンネル登録者というもののシステムすら知りませんでした。なので、当然想定していませんでした。毎日続けているのは元来怠け者で自分に対して激甘なので、1度サボったら絶対にズルズルとサボり続けてしまうのがわかっているからです(現に動画投稿以外のことに関しては自分で嫌になる程怠惰です)。なので、今後もできる限り続けていくつもりですので、引き続きご視聴をよろしくお願いします。
      この頂いたコメントをTwitter等で拡散してもよろしいでしょうか?

    • @sakijin4584
      @sakijin4584 3 года назад +8

      @@kantaro1966 拡散してもよろしいでしょうか? ⇒ どうぞ構いません。これからも日々お元気で継続なさってください。

    • @UnknownUnko
      @UnknownUnko 3 года назад +1

      @@ryosuke8093 どっちも使いそうな気がする

    • @user-kr5me1mo8t
      @user-kr5me1mo8t 2 года назад +3

      saki jin さん
      お子さんを育てておられるということなのであえてコメントさせていただきます。
      「こんにちわ」ではなく「こんにちは」です。

  • @ひま人-p8r
    @ひま人-p8r 4 года назад +380

    数学は壮大な伏線回収である

    • @あさげ-q9m
      @あさげ-q9m 4 года назад +15

      かっこいいなぁ

    • @瓦林遼太郎
      @瓦林遼太郎 4 года назад +3

      このセリフ大好き

    • @ちくちく坊や
      @ちくちく坊や 4 года назад +27

      伏線回収するまでなんでそうなるのか、
      ずっと考える期間が個人的に辛かった。
      先生もそこを全く説明せんしね

    • @nishihiro4223
      @nishihiro4223 4 года назад +2

      たしかに!(^^)

    • @低-c1b
      @低-c1b 4 года назад +3

      確かに

  • @FEAREDY32
    @FEAREDY32 5 лет назад +31

    学ぶことが楽しいと思わせてくれる、ある意味本当の教師

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      ありがとうございます。

  • @nh2750
    @nh2750 4 года назад +21

    これは他の人にも広めたい動画ですね。
    中学生でもわかる方で球の体積、表面積がでたときは感動物でした。

    • @kantaro1966
      @kantaro1966  4 года назад

      ありがとうございます😊

  • @premiumdr.i9527
    @premiumdr.i9527 6 лет назад +217

    受験の時にこんな先生に習いたかった

    • @kantaro1966
      @kantaro1966  6 лет назад +28

      ありがとうございます。ぜひこれなんかもご覧下さい。自然数の平方の逆数の和になぜかπが登場。
      ruclips.net/video/9VyGY6DtU7o/видео.html

    • @SuperOoyama
      @SuperOoyama 6 лет назад +9

      コンナ教師だったら大した高校にも受からないぞ。

    • @ufo7158
      @ufo7158 6 лет назад +48

      SuperOoyama ネタですか?

    • @藤田F
      @藤田F 5 лет назад +8

      どんな先生に習うかではなく、自分が何を学ぶかが大切

    • @munezawa1981
      @munezawa1981 5 лет назад +1

      確かに分かりやすい。

  • @yutaryota309
    @yutaryota309 5 лет назад +35

    塾経営です。早速生徒たちに伝えてみます!これらの公式を丸暗記したままでいるのと、この解説を遅くとも微積履修前に聞いたのではその後の学びの姿勢が格段に変わってくるでしょう。半球の断面で直角二等辺三角形の2辺の長さhが出てくるあたりが山場になりそうです。

    • @kantaro1966
      @kantaro1966  5 лет назад +4

      Yuta Ryota
      ご覧くださりありがとうございます。

  • @nikolarockefeller7880
    @nikolarockefeller7880 6 лет назад +122

    この人の教え方無駄に面白くしようとしてないけど、うまいし深いからめっちゃ面白い。

    • @kantaro1966
      @kantaro1966  6 лет назад +9

      沼昇太 さん
      ありがとうございます。

  • @ナイスコンサル大塚章
    @ナイスコンサル大塚章 Год назад +1

    教わる側からみて、分かりやすい先生を選ぶことが、大きな違い、大切なんだな~と、しみじみ感じました。非常にわかりやすい演繹的教授法ですね。

  • @policy39-j5n
    @policy39-j5n 5 лет назад +33

    こうゆう問題集にないような本質的な話有難いです。

    • @kantaro1966
      @kantaro1966  5 лет назад +3

      ありがとうございます。

  • @瓦林遼太郎
    @瓦林遼太郎 5 лет назад +72

    8:11
    この動き好き

  • @きのこのこのこげんきのこ-n4f

    まだ微積分習ってない高校生です。
    円の表面積、体積の公式ってどうやって求められたものなのかよく分からないまま使っていたけど、前半の説明で納得がいきました。
    その上で、積分ってどんなものなのか見当もつかなかったのですが、後半の説明でなんとなくイメージが掴めました。
    本当に素晴らしい解説をありがとうございました!

  • @田中_田中
    @田中_田中 5 лет назад +26

    学問を学ぶことって、歴史の追体験なんですねぇ

  • @TT-kz9ch
    @TT-kz9ch 3 года назад

    ありがとうございます!

  • @68ootani
    @68ootani 6 лет назад +207

    もともと数学と云うのは、暗記の学問では無いです。いかに深く考えるか、と云う分野なのですが、暗記ですと全く未知の次元の問題に遭遇した場合には、手の施しようがなくなる。ニッチもサッチも行かなくなります。本来、考えると云う営為が数学なので、意味の分からない公式を暗記することほど、苦痛な事は有りません。例えば、初等関数である三角函数、指数函数、対数函数、などでも、公式が、嫌と云うほどあります。いちいち、そんな公式を覚えて居られないです。函数の関係が分って居れば、一つの公式から応用する為の大多数の三角函数の式は導き出せる。
    ですが、テスト試験の場合が困るのですね。或る決められた時間内に、出された問題を解かなければならない。本来の数学は、決められた時間内に解かなければならない何て無いのですが。それで、意味の解らない公式を覚えて、出された問題に適用する、それが試験でありテストなので、これで入学試験に合格したり不合格になったりする。これが数学の嫌いな子を作っている原因の一つなのだと思います。鈴木先生の、この様なプレゼンが、数学の嫌いな子を無くすことが出来る唯一の方法なのだと思います。
    鈴木先生が、このプレゼンを小学生、中学生を対象に講義されているのだとしたら、これはかなり内容のレベルの高い講義です。小学生や中学生という頭の柔らかい時代に、高級な頭の使い方を育てると云うことは、物凄く大事な事です。どうぞご活躍をなさってください。

    • @user-xe3yk9xu9z
      @user-xe3yk9xu9z 6 лет назад +1

      何回言うとよ

    • @ああ-c6b7t
      @ああ-c6b7t 5 лет назад +3

      云うっていう漢字いちいち使ってるのなんなん。そういう使い方するものなのかな。

    • @藤田F
      @藤田F 5 лет назад +8

      まとめ
      数学は公式覚えるものじゃなく考えて理解するもの。
      それが出来ないから数学苦手な子が多い。
      そんな子を増やさないために先生頑張って!

    • @munezawa1981
      @munezawa1981 5 лет назад

      うむ、深いな。

    • @モササウルス-j1b
      @モササウルス-j1b 5 лет назад

      同じ考え

  • @2ぷるん
    @2ぷるん 4 года назад +4

    なるほど分かりやすかった。
    自分は表面積→体積の順でかんがえようとして詰まってましたが、
    動画のように体積→表面積で考えると納得です。

  • @Gemini-ps7le
    @Gemini-ps7le 5 лет назад +12

    最後の積分の考え方美しすぎて中学生の頃の自分に教えてやりたい

  • @なかつ-b5k
    @なかつ-b5k 4 года назад +1

    球の体積(表面積)は中1
    三平方は中3で習う。
    中1で習う時の説明が
    (表面積)
    半径rの円と球を用意して紐を巻きつける。このとき円に比べて球は4倍紐が必要になる。
    という実験を元にした説明しかされなかった。
    この動画でモヤモヤが消えた。
    ありがとう。

  • @user-river315
    @user-river315 4 года назад +1

    中3です。
    何故こんな式になるのかずっと気になっていましたが、この動画を見てやっとすっきりしました。
    とても分かり易かったです

    • @kantaro1966
      @kantaro1966  4 года назад +1

      ありがとうございます😊

  • @ririma4776
    @ririma4776 2 года назад

    これは分かりやすいですね。
    丸暗記ではなく、学校でもこの解説方法で勉強を教えてもらいたいと思いました。
    ワクワクする授業で、学びが楽しくなります。
    中学生の子どもに教えたいと思います。いつもありがとうございます。

  • @nekoneko3131
    @nekoneko3131 6 лет назад +8

    毎回楽しく見させていただいております。昔、本当に頭のいい人の説明は、バカでも解らすことができると聞いたことがありますが、先生の説明はそれにあたると思いました。

  • @MPS-p2j
    @MPS-p2j 5 лет назад +5

    私もただ暗記するのはすきではありません。やはり、理屈が大事ですね。分かりやすい解説ありがとうございました。

    • @kantaro1966
      @kantaro1966  5 лет назад

      ありがとうございます。

  • @horiguchihisato
    @horiguchihisato 6 лет назад +8

    社会人です。教え方もとてもお上手ですが、一生懸命に教えて下さる姿勢にとても胸が打たれます。応援しています。

    • @kantaro1966
      @kantaro1966  6 лет назад +1

      ありがとうございます。是非他の動画もご覧ください。

  • @yuuuu000
    @yuuuu000 4 года назад +2

    なぜそうなるのかずっと考えていました〜!わかりやすい説明ありがとうございます!

  • @TheA9817020
    @TheA9817020 6 лет назад +8

    数学も楽しいですが、アルキメデスの人生も調べてみると楽しいです。そういう切り口の動画をしてみても楽しいですね。数学って無機質に見えちゃうけど、議論してきたのは生身の人間で、歴史があるんだなと思いました。

  • @Raiu_Raiu
    @Raiu_Raiu 5 лет назад +7

    中学生にも分かるのはほんと有難い

  • @永田俊夫-d3n
    @永田俊夫-d3n 2 года назад

    円柱に内接する球、円錐の体積比が綺麗な比例になることを知り、数学の面白さを感じました。

  • @matopeono5852
    @matopeono5852 5 лет назад +3

    鈴木さんとよびのりさんの動画見てると微積に興味がとても湧きます笑
    とてもわかりやすいです!早くできるようになりたい...

  • @raito2jionx
    @raito2jionx 5 лет назад +14

    中学高校のときに習っていれば数学が好きになってたかもしれない

  • @二一-u6k
    @二一-u6k 5 лет назад +1

    純粋に感動した。
    積分からこの発想に至ることが素晴らしい。
    逆に, この考えを先に知っていれば, 積分のイメージがすんなり学生に入りそう。

  • @ムラムラしてきた
    @ムラムラしてきた 4 года назад +3

    前に学習した事が後にちゃんとついてくるんやなぁって…もっと深く理解した気になれた

  • @sonngokuu999
    @sonngokuu999 6 лет назад +6

    veygood。こんな先生に教われたら最高ですね。

    • @kantaro1966
      @kantaro1966  6 лет назад

      ありがとうございます。

    • @haruharu189
      @haruharu189 5 лет назад +2

      vey

    • @masai-rl5ry
      @masai-rl5ry 4 года назад

      ホント、こんな先生に教わったら最高ですね。
      数学を社会科学的に応用したオススメの本です。参考にしてみて下さい。
      ■数学を使わない数学の講義  (著:小室直樹_博士)
      ■数学嫌いな人のための数学―数学原論 (著:小室直樹_博士)

  • @26Dachi
    @26Dachi 5 лет назад +1

    青春時代をおもいだしてます・・わかかったな~懐かしい講義ですな~しかし昔よりよくわかりますな~講義をきくのが70年おそかった~ありがとうございます!

    • @26Dachi
      @26Dachi 5 лет назад

      0!=1・・で0x0=1? 1はなぜ素数ではないのかな?自然数の不思議・・有理数の不思議・・無理数の不思議・・虚数の不思議・・いろいろ不思議の世界を教えてください!10進法・・2進法・・n進法もあるのかな?行列もお願いします!

    • @26Dachi
      @26Dachi 5 лет назад

      数学の歴史上の3?大事件・・大業績・・なんかも解説してください!

    • @26Dachi
      @26Dachi 5 лет назад

      そうか~1を素数とすると・・わからんな~

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      n進法の動画です。N進法 旭川医大、滋賀医科大 高校数学
      ruclips.net/video/2GTk2eX5Huw/видео.html

    • @masai-rl5ry
      @masai-rl5ry 4 года назад

      @@26Dachi
      数学を社会科学的に応用したオススメの本です。参考にしてみて下さい。
      ■数学を使わない数学の講義  (著:小室直樹_博士)
      ■数学嫌いな人のための数学―数学原論 (著:小室直樹_博士)

  • @sakijin4584
    @sakijin4584 Год назад

    鈴木先生、こんにちは。
    以前、娘と父で先生のチャンネルを視聴している、と長々とコメントした者でございます。
    本日合格が決まりました。私学を受けなかったのでハラハラしました。
    これからも、末永く楽しい授業をお続けください。
    御礼申し上げます、ありがとうございました。

    • @kantaro1966
      @kantaro1966  Год назад

      おめでとうございます!

  • @hydeyasu9
    @hydeyasu9 6 лет назад +30

    そもそもこの程度の式を暗記して使える頭がない子は、理屈なんてもっと頭に入らない。
    公式を使える→より深い理解
    このステップを踏む必要があるから、今回の動画は中・上級者向け

    • @papillon407ify
      @papillon407ify 5 лет назад +11

      hydeyasu9 理由がわからないと覚える気が起きないこともあるのです

  • @擬音祭
    @擬音祭 5 лет назад +2

    とてもわかりやすかった。
    算数・数学をほんとにわかりやすく教えることができるのは
    理系の天才ではなく、文系のめっちゃ頭いい人なんじゃないかと思う、
    今日この頃でした。。。

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      ありがとうございます。

    • @cha23232
      @cha23232 5 лет назад

      @@kantaro1966 あなたの番ですの考察動画にいましたよね?

  • @pygmalion6133
    @pygmalion6133 6 лет назад +10

    錐の集合体は教科書にも載ってますが、この体積の証明は初めて見ました!
    おかげでどうしてもできなかった表面積の説明が生徒達にできそうです

    • @kantaro1966
      @kantaro1966  6 лет назад +2

      Yuya Takahashi さん
      ご覧くださりありがとうございます。先生に観られてると思うとビビります。

  • @tailotter5652
    @tailotter5652 5 лет назад +4

    大学に入ってやっと体積と面積の定義を習ったから導ける

  • @M_bosatsu
    @M_bosatsu 5 лет назад +58

    「心配あるある」と「身の上に心配あーるの3乗」で覚えさせられたなぁ

    • @segasamy
      @segasamy 5 лет назад +7

      心配ある事情(二乗)と身の上に心配あると参上する(3乗する)
      でした

    • @user-kd6mg6yi1r
      @user-kd6mg6yi1r 5 лет назад +4

      メガ菩薩
      身の上に心配あるさ
      (3←身の上に4π r←ある3←三乗)

    • @potamusha
      @potamusha 4 года назад +1

      なるほど!

  • @ねこねこ55
    @ねこねこ55 2 года назад

    高校時代にこういう動画を普通に見られたらもう少し授業も楽しく感じられたでしょうね。
    数学は本当に面白いと思います。
    大人になってから学び直すと特にそれを感じます。
    先生どうもありがとうございます😊。

  • @akiyoshi_skymonkey
    @akiyoshi_skymonkey 3 года назад

    錐の体積は柱の体積に1/3を掛ける理由を思いついた時、嬉しかったのを思い出す。
    球の体積はこういう風に考えた事なかったから勉強になるな

  • @川上幸治-k9g
    @川上幸治-k9g 5 лет назад +2

    「認めて下さい、お願いします」誰に言ってるんだろう? たくみさんかなぁ、古賀さんかなぁ🤔
    少なくとも私は、おこがましいですが、認めさせていただきます。
    貫太郎さんの講義の魅力は、取り上げるテーマの面白さと独特の説得力だと思います。

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      ありがとうございます。

  • @kitahii
    @kitahii 6 лет назад +15

    積分が使えるなら速攻で答えが出ますよねw 暗記で勉強してきた人は社会に出て教えていない仕事を振ると習っていないからできませんで終わっちゃう。そうでない人は間違っていたりするけど面白い結果を持ってくる。ちなみに設計職です

  • @mcz_cover
    @mcz_cover 4 года назад +2

    今になって、はっきりしました✨

  • @spepesan
    @spepesan 4 года назад +1

    楽しかった!!よくわかった!!ありがとうございます

  • @aigoogle5690
    @aigoogle5690 5 лет назад +1

    いつも分かりやすい解説感謝です!。

  • @dtaka26
    @dtaka26 4 года назад +2

    微小な三角形に分割して考えるのは応力解析などのシミュレーションで使う有限要素法にも通じるので応用範囲が広いですね。

  • @おっきな釣り針
    @おっきな釣り針 6 лет назад +1

    全体の流れは分かったんですが、
    14:22辺りから、円柱の面積は、半球+円錐になるというところが理解できません。わかる人教えて下さい。

  • @kobayashitetsuro3071
    @kobayashitetsuro3071 6 лет назад +4

    これは素晴らしい!微積分を使わずして説明がつくとは。3歳の娘が約10年後に数学を勉強する時にこれを用いて教えます。

    • @kantaro1966
      @kantaro1966  6 лет назад +1

      Kobayashi Tetsuro さん
      嬉しいコメントをありがとうございます。他にも、どうしてそうなるかを考える動画を多数投稿しているので、ご覧になってください。

  • @中村貴代-q6r
    @中村貴代-q6r 4 года назад +1

    中学になって最初の夏休みの数学の課題はこれにします!!w分かりやすい説明でありがとうございました!!!

    • @kantaro1966
      @kantaro1966  4 года назад +2

      同じ内容ですが、こちらも参考にしてみてください。ruclips.net/video/jijwyFB6MPI/видео.html

    • @中村貴代-q6r
      @中村貴代-q6r 4 года назад +1

      @@kantaro1966 はい!ありがとうございます。参考にさせていただきます。

  • @sattorinn
    @sattorinn 6 лет назад +11

    非常にためになります、これからも動画投稿頑張ってください。

    • @kantaro1966
      @kantaro1966  6 лет назад +1

      sattorinn さん
      ありがとうございます。

  • @Cu29Hunter
    @Cu29Hunter 5 лет назад +1

    面白いですね。
    動画楽しみにしてます。

    • @kantaro1966
      @kantaro1966  5 лет назад

      ありがとうございます

  • @se--ya
    @se--ya 6 лет назад +3

    「錐の体積はなぜ3分の一か」の動画を見たあとに、この動画を見ました。
    錐の時は見てもよく分からなかったのですが、こちらの動画を見てやっと理解できました。
    錐と球(半球)で同じことをしてたんですね。
    二回見てようやく分かったという感じです。
    でもとても分かりやすく、私は高校のころは数ⅡBまでしかしてなかったのですが、そこまでの知識で理解できるので、すごいと思いました。
    これからも頑張ってください。

    • @kantaro1966
      @kantaro1966  6 лет назад

      岩井誠也 さん
      ご覧になってくださりありがとうございます。私も私立文系の大学ですが、40過ぎてから独学で数3の内容を勉強しました。「中学生の知識でオイラーの公式を理解しよう」は好評をいただいているので是非ご覧ください。ruclips.net/p/PLFrlW-Y5LqlZ3GtrzuiMVZnjFXbpmG3YM

    • @片岡正也-k5j
      @片岡正也-k5j 6 лет назад

      岩井誠也 「モノの見方を変えてみる」ことがモノの本質を理解するのに役立つという最適の例ですな。逆説すると、一個の真理は、どの角度から説明してもそこにたどり着けるようになってる、その角度をいくつ知っているかで説明の選択肢が増え、他の説明では分からなかった誰かの理解の一助になる。

  • @ボスセブン
    @ボスセブン 5 лет назад +2

    一部分だけの球を求める積分計算はちょっと前にしたんだけど
    それまでの積分にたどり着く過程が奥深いね。もう思い出せないけど・・・

  • @yukasa401
    @yukasa401 5 лет назад +13

    初見だけどアンパンマンみたいでかわいい先生だなと思いました。

    • @市屋六助
      @市屋六助 5 лет назад +4

      警察官MUR むしろジャムおじさんやろ

    • @aぺーなっふる
      @aぺーなっふる 4 года назад +6

      @@市屋六助 ヨビノリとしっかり対比してて草

  • @天道あかね-n7q
    @天道あかね-n7q 5 лет назад +1

    球の体積の公式を微分すると球の表面積の公式になるのが不思議でした。
    これで疑問が氷解しました。
    先生ありがとうございました。

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      ご覧くださりありがとうございます。

    • @masai-rl5ry
      @masai-rl5ry 4 года назад

      数学を社会科学的に応用したオススメの本です。参考にしてみて下さい。
      ■数学を使わない数学の講義  (著:小室直樹_博士)
      ■数学嫌いな人のための数学―数学原論 (著:小室直樹_博士)

  • @morionomori
    @morionomori 3 года назад

    2000年前にこういうことを考えてる人間がいたってのがすごい

  • @NoName-ei8gq
    @NoName-ei8gq 3 года назад

    諦め悪いマンだから
    本当にありがたいです

  • @まっくす-j6x
    @まっくす-j6x 5 лет назад +1

    全く数学興味なくたまたま入ってきたがこの先生めっちゃわかかりやすいわー

    • @kantaro1966
      @kantaro1966  5 лет назад +1

      ありがとうございます😊

  • @amuko1550
    @amuko1550 10 месяцев назад

    円の体積はカヴァリエリの原理から導き出されたってあって感動したなぁ

  • @Sh944nz
    @Sh944nz 2 года назад

    6:45
    三角錐を使って、錐が1/3になる理由を説明

  • @sakakkiedx5052
    @sakakkiedx5052 3 года назад

    立体は断面の集合体で、2立体の各同レベル断面が常に同面積なら2体積も一緒
    このイメージはまさに定積分のそれですよね

  • @carvadonair1101
    @carvadonair1101 5 лет назад +5

    Thanks RUclips for this recommendation

  • @kojikatakura9916
    @kojikatakura9916 6 лет назад +5

    とても参考になりました。 中三数学を教えていますが、理由もわからない公式を使わせる、というのは確かにやりたくないですね。「柱の体積ーー>錐の体積ーー>球の体積=錐の集合」をいつか使わせていただきます。 因みにアルキメデスの、面積の方はわかりませんが、体積の方(円柱*2/3=球)は実験(排水法)に依ったのではないでしょうか。ありがとうございました。

  • @しばたゆみこ-b8x
    @しばたゆみこ-b8x 2 года назад

    錐:球:柱が1:2:3を覚えてれば、全てが導けますね。

  • @nmbk1684
    @nmbk1684 5 лет назад +4

    とても面白いです!この前もっちゃんさんと二次方程式の解の公式導かれてましたよね?あれをこんな講義形式で再録希望します(^^♪この動画と合わせて数学好きの小学生に見せたい!

  • @picardpapa
    @picardpapa 3 года назад

    わかりやすい動画ありがとうございます。一点よくわからなかったのですが、 09:26あたりで、三角柱を上の頂点二つと下の頂点を通るような平面で切るくだりがありますが、切り取られた方は三角錐になりますが、残った方は三角錐にはならないので同じ体積のものが結果三つできるというところがよくわかりませんでした。
    ここ最初から二つの平面で切って三つの錐ができるけど、実はこの三つは同じ体積になるという理解で大丈夫ですかね?なぜその二平面できる事を思いつけるのかが子供には引っかかりそうですが。

    • @kantaro1966
      @kantaro1966  3 года назад

      9:47で残りの立体を倒して2つの三角錐に分けてます。

    • @user-lm2fb5dv5b
      @user-lm2fb5dv5b 2 года назад

      ここ、最初私もピンときませんでしたが、 3つの錐の堆積をx , y, z とおくと、説明順だと底面(下側)が等しいのでx= y また 右側を底面とすると 底面が合同の錐に二分割されるので、y= z ゆえに x = y = z みたいな感じになりますね。 こういうのを一瞬でわかる人が得意な人、センスある人なんだろうなあ…。

  • @777decchirico9
    @777decchirico9 6 лет назад +3

    半球の体積はそれを含む円柱の体積の2/3なんだ。これ今回初めて知りました。

  • @uenoyoshiaki
    @uenoyoshiaki 4 года назад +1

    正 2 n 角形を1つの対角線に関して回転してできる回転体の体積は円錐台の側面積の和から 4 π r^2 cos(π/(2n)) と計算できます。ここで n →無限大とすれば 4 π r^2 となります。これには円周角定理をつかった巧みな計算があり、オイラーによるものらしいです。

  • @ryoiguchi2710
    @ryoiguchi2710 5 лет назад +4

    中学校の数学の授業で、「面積心配ある事情」「体積は身の上に心配あるので参上!」と語呂合わせで何度も言われて覚えました。理屈抜きの語呂合わせで覚える勉強が嫌いな私は、全然楽しくなかった。数学は、このように理屈をきちんと習う学問なんだと改めて実感しました。

  • @ディズニーカズキ3世紀前57年前

    2:50 ここ2,3年以上前って聞こえてびっくりした

  • @橋本理-b5s
    @橋本理-b5s 6 лет назад +13

    ガヴァリエリを使っての球の体積、表面積の出しかたは99%同じ内容のことを考えておりました。今度、数学Ⅰでこの内容を話そうと考えておりました。自信につながりましたが、高校一年生の理解力のある生徒には通じると思っております。ガヴァリエリは長岡亮介先生の参考書本質の研究を参考にしました。どうもありがとうございます。

    • @kantaro1966
      @kantaro1966  6 лет назад

      橋本理 さん 丁寧なコメントありがとうございます。チャンネル登録して頂けたら嬉しいです。これからも参考になれるような動画の作成を心がけていきます。

    • @橋本理-b5s
      @橋本理-b5s 6 лет назад +4

      登録しました。

  • @wasabi7thv
    @wasabi7thv 4 года назад +1

    こんばんは(^-^)/
    RUclipsでこちらの動画のお知らせを拝見し、受講しました。
    教科書が基本なのは、理解してますが、僕はその教科書が読みづらいです。自分が分からないことを、理解できるように説明して下さる先生の動画を、繰り返し受講できるのは、幸せなことだと思います。
    👍️いたしました。

  • @ddes3012
    @ddes3012 3 года назад

    詰将棋も見ています。役に立ちました。広告多いのが残念

  • @ルル-n5i
    @ルル-n5i 6 лет назад +1

    いやー、目から鱗が落ちまくりです。
    楽しいし美しい!
    でも、私はまだ修業中の身で、実は後半がよく分かりませんでした。
    今、訳あって高校の数学を独学で勉強しているところで、積分のことはまだ分からないのです。
    もう少し修行を積んだらまたこの動画を見に来ます。
    でも、前半だけで4回くらい「お~っ!!」と感嘆の声を上げたくらい感動しました。
    ありがとうございます。

  • @norichanfutonya7787
    @norichanfutonya7787 6 лет назад +2

    素晴らしい。数学は、暗記ではなく考え方を身につける学問です。三平方の定理(これも勿論説明可能です)も中学生で、教えるので、球の体積までは、この説明で納得してもらえそうです。
    (わたしは、高校の時積分から公式を導き出しはやりました。でも中学とは。)
    先生は球の公式の暗記の仕方についても言及されてます。しかし多分先生が暗記の仕方をインターネット等で見つけた時、苦虫を潰したような顔したことは、想像に難くありません。笑
    後、受験生でない人も楽しめるように、公式の説明は非常に面白いのでやってほしい。
    例えば、微分の公式を接線の概念からlimを使わず重根から導き出すとか。
    後は、和算への考察とか。円理とか面白いです。とにかく、公式を使わず全て説明しようと言う男らしさ(男女差別 笑)がカッコいいです。

    • @kantaro1966
      @kantaro1966  6 лет назад

      Norichanfutonya さん
      ご覧くださりありがとうございます。

  • @kamenoseiji
    @kamenoseiji 4 года назад +2

    ベクトルr = (x, y, z)にガウスの定理を適用し、∫∫∫ ∇・r dV = ∬ r・n ds で∇・r = 3 だから3V = 底面積 × r が導かれる。3は3次元だから。

  • @take-take2511
    @take-take2511 6 лет назад +1

    ずっとモヤモヤしてたのが晴れました

    • @kantaro1966
      @kantaro1966  6 лет назад

      take-take さん
      ありがとうございます。ぜひ、他の動画もごらになって下さい。「なぜ?」に答えるのを主眼に置いた動画作りを心がけてます。

    • @take-take2511
      @take-take2511 6 лет назад +1

      ありがとうございます。
      小さい学習塾を経営している者です。
      最近は学校の先生が、解き方ばっかり教えて「なぜ?」に答えてくれない感じですー

  • @森山高志-k7x
    @森山高志-k7x 5 лет назад

    高校くらいまでだとこういうのもですっていう覚え方するのが公式とか方程式ですよね。たまに学校のテキストでも公式を証明しなさいみたいな問題が出てきますよね。けっこう受験数学って条件書かれてないから自由度高いですよね。赤本ってあくまでも見解ですもんね。代ゼミのセンター試験答え合わせみたいなとこありますよね。本来なら正解は4択。途中経過は点数にならないという。あとアルキメデスってダ・ヴィンチに近いとこもありますよね。

  • @hishi4192
    @hishi4192 3 года назад

    数学は公式ではなく、公式を導き出す考え方なんですよね。
    高校の時、線は点の総和、面は線の総和、体積は面の総和と教わりましたか、次元を一つ上げた総和を考えろ!と教わりました。
    わかる人はわかるけど、沈んでいく人は数学が嫌いになってましたね。(笑)
    このように教われば、ほとんどの人は数学が嫌いにならなかったでしょう。

  • @ピーチョコ-e3r
    @ピーチョコ-e3r 6 лет назад +3

    小学生に微積分を教えるのはどうかと思うから実験でやってみるのは良さそうだね
    たとえば
    体積=表面積*r/3ってことがわかってるから
    表面積=体積*3/r
    半径rの直方体に水を一杯入れておいて半径rの球をすっぽり入れる
    溢れた水の体積は測れるからそこから表面積を割り出す
    半径rが変わっていくと表面積がどうかわっているかを考えさせて公式を導かせる
    これなら楽しくまなべそうやな

  • @anju2197
    @anju2197 4 года назад

    球を円錐の集合であると考えるとき、どれだけ錐の底面を小さくしてもちょっとずつ隙間が出来てしまわないんですか?そこが気になります。

    • @kantaro1966
      @kantaro1966  4 года назад

      円錐とは言っておりません。細かく切るので正方形(厳密には曲面ですが)でもサッカーボルのように5角形や6角形が混じっても構いません。

  • @ハワードロック
    @ハワードロック 6 лет назад +6

    自己解決しました
    円錐の底面の円が正方形に内接するときの半径をrではなく√2rとみなし高さがrなら
    円錐を張り合わせた立体は4/3πr^3です
    つまり円錐は底面だけが円なので頂点との隙間を√2r=r+xではなく√2r=rとしてしまうことによって隙間を消滅させてしまえば一つの円錐の体積は2/3πr^3なので6倍して三分の一にすれば4/3πr^3と見なせないこともないですね
    ええ、屁理屈ですとも

  • @a6m21zo
    @a6m21zo 6 лет назад +40

    ああ 積木遊びはこのためにあるのか イヤイヤ

  • @申し訳ありません-t3x
    @申し訳ありません-t3x 4 года назад

    この人好き。

    • @kantaro1966
      @kantaro1966  4 года назад

      ありがとうございます😊

  • @すーぱーごじーた
    @すーぱーごじーた 6 лет назад +1

    コメント失礼します、円錐台の公式の導出で相似比を用いたものは理解したのですが、積分を用いたものはあるのでしょうか?教えていただけますと幸いです。

    • @kantaro1966
      @kantaro1966  6 лет назад

      断面積を関数で表して、0からhまで積分すれば円錐の体積、0から途中まで積分すれば円錐台の体積になると思います。

    • @すーぱーごじーた
      @すーぱーごじーた 6 лет назад +1

      やってみます!!ありがとうございます!

  • @加藤-s5m
    @加藤-s5m Год назад

    なぜ表面積を求める式で4がくるんですか?

  • @もり-h4u
    @もり-h4u 6 лет назад +1

    この発想はすげえ。

  • @おもむろ-c7p
    @おもむろ-c7p 6 лет назад +45

    微積の考え方って小中学の円の面積や球の表面積体積の時に教わってたんだな

    • @kantaro1966
      @kantaro1966  6 лет назад +3

      ビス さん
      ご覧になってくださりありがとうございます。是非、他の動画もご視聴下さい。

    • @sato7593
      @sato7593 6 лет назад +8

      確かに円を細かく扇形きって交互に並べると平行四辺形になる図があったなー(2000年生まれ)

    • @運動方程式-o4p
      @運動方程式-o4p 5 лет назад +1

      @@sato7593 懐かしすぎる...

    • @Ruuuu123
      @Ruuuu123 4 года назад +1

      sato 俺が小5くらいの時に父親からその図書いてもらった記憶あるなあ。当時の父親はドヤ顔で俺に微分積分がなんたるかを語ったかもしれないが、俺はさっぱり分からずに相槌を打つことしか出来なかったね

  • @高木清治
    @高木清治 4 года назад +1

    2の3乗根は1.25992104989487316476721・・・
    立方体の一辺の長さを求めるのにターミナルのbcコマンドでr3=2;b=1/3;e(b*l(r3));と何故か両辺対数をとってeで記述。

  • @髙橋瞭太-l2x
    @髙橋瞭太-l2x 6 лет назад +1

    とても分かりやすい説明ありがとうございました!中学生に教える際に参考にさせていただきます!
    1つお伺いしたいのですが、14:10の所で半円の切り口の面積と円錐の切り口の面積を足す理由を教えていただければ幸いです。

    • @kantaro1966
      @kantaro1966  6 лет назад +1

      足せば円柱の底面積と一致するからです。

    • @髙橋瞭太-l2x
      @髙橋瞭太-l2x 6 лет назад

      鈴木貫太郎 分かりました!ありがとうございます!

  • @相良俊介
    @相良俊介 4 года назад +1

    錐の体積根拠分からんかったが冒頭の図見た瞬間理解した

  • @kamikei8787
    @kamikei8787 3 года назад

    球の表面積についても積分で示されることを解説してほしいです。

  • @swordone
    @swordone 4 года назад +2

    私がこれ習った頃、積分という言葉は出なかったにせよ、こういう話は教科書にちゃんと載っていたと記憶してますが…

  • @johnstay4770
    @johnstay4770 4 года назад

    数学学ばせて頂きます!

  • @kanatt_h1
    @kanatt_h1 4 года назад +1

    中一の時先生に理由教えて貰ってまじ納得したの思い出した
    その理由うろ覚えやけど

  • @原田退場
    @原田退場 4 года назад +2

    でんがんさんがこの動画のこと話してたので見に来た

    • @kantaro1966
      @kantaro1966  4 года назад

      そうなんですか?どの動画でしょうか?よければ教えてください。

    • @原田退場
      @原田退場 4 года назад +2

      鈴木貫太郎 m.ruclips.net/video/IIPw080AA6I/видео.html 2:55です

    • @kantaro1966
      @kantaro1966  4 года назад

      ありがとうございます😊

  • @小嶋茜-k7b
    @小嶋茜-k7b 6 лет назад +15

    5世紀の中国の数学家祖沖之およびその息子祖暅による球体積の計算方法ですね。西洋では17世紀になってカヴァリエリの原理として知られていますね。

    • @satoruikenobe114
      @satoruikenobe114 6 лет назад +1

      Wonderful!

    • @こねこねこ-e3g
      @こねこねこ-e3g 5 лет назад +2

      祖沖之ってあれか、円周率を355/113でした人か。小学生の頃に読んだ本いまだに覚えてるわ

  • @kumachan19852007
    @kumachan19852007 5 лет назад

    すいません、表面積が4πr2 になるのがよくわかりません。堆積が3乗して、錐の集合体で3で割り算するというのはイメージが付きます。

  • @masamasado
    @masamasado 6 лет назад +2

    すげーー めちゃめちゃ面白い!!

    • @kantaro1966
      @kantaro1966  6 лет назад +1

      ありがとうございます。是非他の動画もご覧ください。

    • @masai-rl5ry
      @masai-rl5ry 4 года назад

      数学を社会科学的に応用したオススメの本です。参考にしてみて下さい。
      ■数学を使わない数学の講義  (著:小室直樹_博士)
      ■数学嫌いな人のための数学―数学原論 (著:小室直樹_博士)

  • @jissen-tosho
    @jissen-tosho 4 года назад

    三角柱から最初の三角錐を切り除くところで、取り除いたものを2つに分けて、それぞれ同じ体積なのはよいのだけど、それぞれが最初の三角錐と同じ体積である証明が無いような。最初の三角錐を切り分ける時点で1/3ありきになっている気がする。